Полная и приведённая системы вычетов. Системы вычетов Основные сведения из теории

  • 19.01.2024

Полная система вычетов. Приведённая система вычетов. Наиболее употребительные системы вычетов: наименьшая положительная, наименьшая неотрицательная, абсолютно наименьшая и т.д.

Теорема 1 . Свойства полной и приведённой система вычетов.

1°.Критерий полной системы вычетов. Любая совокупность из m целых чисел, попарно не сравнимых по модулю m , образует полную систему вычетов по модулю m .

2°. Если числа x 1 , x 2 , ..., x m – полная система вычетов по модулю m , (a , m ) = 1, b – произвольное целое число, то числа ax 1 +b , ax 2 +b , ..., ax m +b также составляют полную систему вычетов по модулю m .

3°. Критерий Приведённой системы вычетов. Любая совокупность, состоящая из j(m ) целых чисел, попарно не сравнимых по модулю m и взаимно простых с модулем, образует приведённую систему вычетов по модулю m .

4°. Если числа x 1 , x 2 , ..., x j ( m ) – приведённая система вычетов по модулю m , (a , m ) = 1, то числа ax 1 , ax 2 , ..., a x j ( m ) также составляют приведённую систему вычетов по модулю m .

Теорема 2. Теорема Эйлера.

Если числа a и m взаимно простые, то a j ( m ) º 1(mod m ).

Cледствие .

1°. Теорема Ферма. Если p – простое число и a не делится на p , то a p –1 º 1(mod p ).

2°. Обобщенная теорема Ферма. Если p – простое число, то a p º a (mod p ) для любых a ÎZ .

§ 4. Решение сравнений с переменной

Решение сравнений. Равносильность. Степень сравнения.

Теорема . Свойства решений сравнений.

1°.Решениями сравнений являются целые классы вычетов.

2°. ("k )(a k º b k (mod m ))Ùk = Þ сравнения º 0 (mod m ) и º 0 (mod m ) равносильны.

3°. Если обе части сравнения умножить на число, взаимно простое с модулем, то получится сравнение, равносильное исходному.

4°. Всякое сравнение по простому модулю p равносильно сравнению, степень которого не превосходит p –1.

5°. Сравнение º 0 (mod p ), где p – простое число, имеет не более n различных решений.

6°. Теорема Вильсона. (n –1)! º –1 (mod n ) Û n простое число.

§ 5. Решение сравнений первой степени

ax º b (mod m ).

Теорема . 1°. Если (a , m ) = 1, то сравнение имеет решение, причем единственное.



2°. Если (a , m ) = d и b не делится на d , то сравнение не имеет решений.

3°. Если (a , m ) = d и b делится на d , то сравнение имеет d различных решений, которые составляют один класс вычетов по модулю .

Способы решения сравнений ax º b (mod m ) в случае, когда (a , m ) = 1:

1) подбор (перебор элементов полной системы вычетов);

2) использование теоремы Эйлера;

3) использование алгоритма Евклида;

4) вариация коэффициентов (использование свойства 2° полной системы вычетов из Теоремы 2.2);

§ 6. Неопределенные уравнения первой степени

ax +by = c .

Теорема . Уравнение ax +by = c разрешимо тогда и только тогда, когда c (a , b ).

В случае (a , b ) = 1 все решения уравнения задаются формулами

t ÎZ , где x 0 является каким-либо решением сравнения

ax º c (mod b ), y 0 = .

Диофантовы уравнения.

ГЛАВА 10. Комплексные числа

Определение системы комплексных чисел. Существование системы комплексных чисел

Определение системы комплексных чисел.

Теорема . Система комплексных чисел существует.

Модель: R 2 с операциями

(a , b )+(c , d ) = (a +c , b +d ), (a , b )×(c , d ) = (ac bd , bc +ad ),

i = (0, 1) и отождествлением а = (а , 0).

Алгебраическая форма комплексного числа

Представление комплексного числа в виде z = a +bi , где a , b ÎR , i 2 = –1. Единственность такого представления. Re z , Im z .

Правила выполнения арифметических действий над комплексными числами в алгебраической форме.

Арифметическое n -мерное векторное пространство C n . Системы линейных уравнений, матрицы и определители над C .

Извлечение квадратных корней из комплексных чисел в алгебраической форме.

Совокупность чисел, сравнимых с a по модулю m называется классом чисел по модулю m (или классом эквивалентности). Все числа одного класса имеют вид mt + r при фиксированном r .

При заданном m , r может принимать значения от 0 до m -1, т.е. всего существует m классов чисел по модулю m , и любое целое число попадет в один из классов по модулю m . Таким образом,

Z = m m … [m -1] m , где [r ] m ={x Z: x r (mod m )}

Любое число класса [r ] m называется вычетом по модулю m по отношению ко всем числам того же класса. Число, равное остатку r , называется наименьшим неотрицательным вычетом .

Вычет, наименьший по абсолютной величине, называется абсолютно наименьшим вычетом .

Пример

Возьмем модуль m =5. И пусть a =8. Разделим a на m с остатком:

Остаток r =3. Значит 8 5 , и наименьший неотрицательный вычет числа 8 по модулю 5 есть 3.

Абсолютно наименьший вычет можно отыскать, вычислив r-m=3-5=-2, и сравнив абсолютные величины |-2| и |3|. |-2|<|3|, значит -2 – абсолютно наименьший вычет числа 8 по модулю 5.

Взяв от каждого класса по одному вычету, получим полную систему вычетов по модулю m . Если все эти числа будут являться наименьшими неотрицательными вычетами по модулю m , то такая система вычетов называется полной системой наименьших неотрицательных вычетов , и обозначается Z m .

{0; 1;…; m -1} = Z m – полная система наименьших неотрицательных вычетов.

{– ;…; 0;…; } (если m –нечетное число) ;

{ - ,…,-1, 0, 1,…, } или {- ,…, -1, 0, 1,…, } (если m четное число) – полная система абсолютно наименьших вычетов.

Пример

Если m =11, то полная система наименьших неотрицательных вычетов есть {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, а полная система абсолютно наименьших вычетов – {–5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5}.

Утверждение 1

Любые m чисел, попарно несравнимые по модулю m , образуют полную систему вычетов по этому модулю.

Доказательство:

Действительно, в силу несравнимости эти числа принадлежат к разным классам, а т.к. их m штук, то в каждый существующий класс попадает ровно одно число.

Утверждение 2

Если (a , m ) = 1, и x пробегает полную систему вычетов по модулю m , то ax +b , где b – любое число из Z, тоже пробегает полную систему вычетов по модулю m .

Доказательство:

Чисел ax +b будет ровно m штук. Остается доказать, что любые 2 числа ax 1 +b и ax 2 +b несравнимы по модулю m , если x 1 x 2 (mod m )

Доказательство от противного. Предположим, что ax 1 +b ax 2 +b (mod m ) в силу 4-го св-ва сравнений, ax 1 ≡ ax 2 (mod m ) в силу св-ва сравнений №9 и того, что (a , m ) = 1, имеем x 1 ≡ x 2 (mod m ). Получили противоречие с тем, что x 1 x 2 (mod m ). Следовательно, предположение неверно, а значит верно обратное. То есть ax 1 +b и ax 2 +b несравнимы по модулю m , если x 1 x 2 (mod m ), что и требовалось доказать.

Кольцо вычетов по модулю n обозначают или . Его мультипликативную группу, как и в общем случае групп обратимых элементов колец, обозначают × × .

Простейший случай

Чтобы понять структуру группы , можно рассмотреть частный случай , где - простое число, и обобщить его. Рассмотрим простейший случай, когда , то есть .

Теорема: - циклическая группа.

Пример : Рассмотрим группу

= {1,2,4,5,7,8} Генератором группы является число 2. Как видим, любой элемент группы может быть представлен в виде , где ≤ℓφ . То есть группа - циклическая.

Общий случай

Для рассмотрения общего случая необходимо определение примитивного корня . Примитивный корень по простому модулю - это число, которое вместе со своим классом вычетов порождает группу .

Примеры: 2 11 ; 8 - примитивный корень по модулю 11 ; 3 не является примитивным корнем по модулю 11 .

В случае целого модуля определение такое же.

Структуру группы определяет следующая теорема: Если p - нечётное простое число и l - целое положительное, то существуют примитивные корни по модулю , то есть - циклическая группа.

Пример

Приведённая система вычетов по модулю состоит из классов вычетов: . Относительно определённого для классов вычетов умножения они образуют группу, причём и взаимно обратны (то есть ), а и обратны сами себе.

Структура группы

Запись означает «циклическая группа порядка n».

Структура группы (Z/ n Z) ×
× φ λ Генератор группы × φ λ Генератор группы × φ λ Генератор группы × φ λ Генератор группы
1 C 1 1 1 0 33 C 2 ×C 10 20 10 2, 10 65 C 4 ×C 12 48 12 2, 12 97 C 96 96 96 5
2 C 1 1 1 1 34 C 16 16 16 3 66 C 2 ×C 10 20 10 5, 7 98 C 42 42 42 3
3 C 2 2 2 2 35 C 2 ×C 12 24 12 2, 6 67 C 66 66 66 2 99 C 2 ×C 30 60 30 2, 5
4 C 2 2 2 3 36 C 2 ×C 6 12 6 5, 19 68 C 2 ×C 16 32 16 3, 67 100 C 2 ×C 20 40 20 3, 99
5 C 4 4 4 2 37 C 36 36 36 2 69 C 2 ×C 22 44 22 2, 68 101 C 100 100 100 2
6 C 2 2 2 5 38 C 18 18 18 3 70 C 2 ×C 12 24 12 3, 69 102 C 2 ×C 16 32 16 5, 101
7 C 6 6 6 3 39 C 2 ×C 12 24 12 2, 38 71 C 70 70 70 7 103 C 102 102 102 5
8 C 2 ×C 2 4 2 3, 5 40 C 2 ×C 2 ×C 4 16 4 3, 11, 39 72 C 2 ×C 2 ×C 6 24 6 5, 17, 19 104 C 2 ×C 2 ×C 12 48 12 3, 5, 103
9 C 6 6 6 2 41 C 40 40 40 6 73 C 72 72 72 5 105 C 2 ×C 2 ×C 12 48 12 2, 29, 41
10 C 4 4 4 3 42 C 2 ×C 6 12 6 5, 13 74 C 36 36 36 5 106 C 52 52 52 3
11 C 10 10 10 2 43 C 42 42 42 3 75 C 2 ×C 20 40 20 2, 74 107 C 106 106 106 2
12 C 2 ×C 2 4 2 5, 7 44 C 2 ×C 10 20 10 3, 43 76 C 2 ×C 18 36 18 3, 37 108 C 2 ×C 18 36 18 5, 107
13 C 12 12 12 2 45 C 2 ×C 12 24 12 2, 44 77 C 2 ×C 30 60 30 2, 76 109 C 108 108 108 6
14 C 6 6 6 3 46 C 22 22 22 5 78 C 2 ×C 12 24 12 5, 7 110 C 2 ×C 20 40 20 3, 109
15 C 2 ×C 4 8 4 2, 14 47 C 46 46 46 5 79 C 78 78 78 3 111 C 2 ×C 36 72 36 2, 110
16 C 2 ×C 4 8 4 3, 15 48 C 2 ×C 2 ×C 4 16 4 5, 7, 47 80 C 2 ×C 4 ×C 4 32 4 3, 7, 79 112 C 2 ×C 2 ×C 12 48 12 3, 5, 111
17 C 16 16 16 3 49 C 42 42 42 3 81 C 54 54 54 2 113 C 112 112 112 3
18 C 6 6 6 5 50 C 20 20 20 3 82 C 40 40 40 7 114 C 2 ×C 18 36 18 5, 37
19 C 18 18 18 2 51 C 2 ×C 16 32 16 5, 50 83 C 82 82 82 2 115 C 2 ×C 44 88 44 2, 114
20 C 2 ×C 4 8 4 3, 19 52 C 2 ×C 12 24 12 7, 51 84 C 2 ×C 2 ×C 6 24 6 5, 11, 13 116 C 2 ×C 28 56 28 3, 115
21 C 2 ×C 6 12 6 2, 20 53 C 52 52 52 2 85 C 4 ×C 16 64 16 2, 3 117 C 6 ×C 12 72 12 2, 17
22 C 10 10 10 7 54 C 18 18 18 5 86 C 42 42 42 3 118 C 58 58 58 11
23 C 22 22 22 5 55 C 2 ×C 20 40 20 2, 21 87 C 2 ×C 28 56 28 2, 86 119 C 2 ×C 48 96 48 3, 118
24 C 2 ×C 2 ×C 2 8 2 5, 7, 13 56 C 2 ×C 2 ×C 6 24 6 3, 13, 29 88 C 2 ×C 2 ×C 10 40 10 3, 5, 7 120 C 2 ×C 2 ×C 2 ×C 4 32 4 7, 11, 19, 29
25 C 20 20 20 2 57 C 2 ×C 18 36 18 2, 20 89 C 88 88 88 3 121 C 110 110 110 2
26 C 12 12 12 7 58 C 28 28 28 3 90 C 2 ×C 12 24 12 7, 11 122 C 60 60 60 7
27 C 18 18 18 2 59 C 58 58 58 2 91 C 6 ×C 12 72 12 2, 3 123 C 2 ×C 40 80 40 7, 83
28 C 2 ×C 6 12 6 3, 13 60 C 2 ×C 2 ×C 4 16 4 7, 11, 19 92 C 2 ×C 22 44 22 3, 91 124 C 2 ×C 30 60 30 3, 61
29 C 28 28 28 2 61 C 60 60 60 2 93 C 2 ×C 30 60 30 11, 61 125 C 100 100 100 2
30 C 2 ×C 4 8 4 7, 11 62 C 30 30 30 3 94 C 46 46 46 5 126 C 6 ×C 6 36 6 5, 13
31 C 30 30 30 3 63 C 6 ×C 6 36 6 2, 5 95 C 2 ×C 36 72 36 2, 94 127 C 126 126 126 3
32 C 2 ×C 8 16 8 3, 31 64 C 2 ×C 16 32 16 3, 63 96 C 2 ×C 2 ×C 8 32 8 5, 17, 31 128 C 2 ×C 32 64 32 3, 127

Применение

На сложности, Ферма, Хули, . Уоринг сформулировал теорему Вильсона, а Лагранж её доказал. Эйлер предположил существование примитивных корней по модулю простого числа. Гаусс это доказал. Артин выдвинул свою гипотезу о существовании и количественной оценке простых чисел, по модулю которых заданное целое число является первообразным корнем. Брауэр внес вклад в исследование проблемы существования наборов последовательных целых чисел, каждое из которых - k-ая степень по модулю p. Билхарц доказал аналог гипотезы Артина. Хули доказал гипотезу Артина с предположением справедливости расширенной гипотезы Римана в полях алгебраических чисел.

Примечания

Литература

  • Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. - М. : Мир, 1987.
  • Алферов А.П., Зубов А.Ю., Кузьмин А.С. Черемушкин А.В. Основы криптографии. - Москва: «Гелиос АРВ», 2002.
  • Ростовцев А.Г., Маховенко Е.Б. Теоретическая криптография. - Санкт-Петербург: НПО «Профессионал», 2004.

Пункт 17. Полная и приведенная системы вычетов.

В предыдущем пункте было отмечено, что отношение є m сравнимости по произвольному модулю m есть отношение эквивалентности на множестве целых чисел. Это отношение эквивалентности индуцирует разбиение множества целых чисел на классы эквивалентных между собой элементов, т.е. в один класс объединяются числа, дающие при делении на m одинаковые остатки. Число классов эквивалентности є m (знатоки скажут - "индекс эквивалентности є m ") в точности равно m .

Определение. Любое число из класса эквивалентности є m будем называть вычетом по модулю m . Совокупность вычетов, взятых по одному из каждого класса эквивалентности є m , называется полной системой вычетов по модулю m (в полной системе вычетов, таким образом, всего m штук чисел). Непосредственно сами остатки при делении на m называются наименьшими неотрицательными вычетами и, конечно, образуют полную систему вычетов по модулю m . Вычет r называется абсолютно наименьшим, если пrп наименьший среди модулей вычетов данного класса.

Пример : Пусть m = 5 . Тогда:

0, 1, 2, 3, 4 - наименьшие неотрицательные вычеты;

2, -1, 0, 1, 2 - абсолютно наименьшие вычеты.

Обе приведенные совокупности чисел образуют полные системы вычетов по модулю 5 .

Лемма 1. 1) Любые m штук попарно не сравнимых по модулю m чисел образуют полную систему вычетов по модулю m .

2) Если а и m взаимно просты, а x m , то значения линейной формы аx+b , где b - любое целое число, тоже пробегают полную систему вычетов по модулю m .

Доказательство. Утверждение 1) – очевидно. Докажем утверждение 2). Чисел аx+b ровно m штук. Покажем, что они между собой не сравнимы по модулю m . Ну пусть для некоторых различных x 1 и x 2 из полной системы вычетов оказалось, что ax 1 +b є ax 2 +b(mod m) . Тогда, по свойствам сравнений из предыдущего пункта, получаем:

ax 1 є ax 2 (mod m)

x 1 є x 2 (mod m)

– противоречие с тем, что x 1 и x 2 различны и взяты из полной системы вычетов.

Поскольку все числа из данного класса эквивалентности є получаются из одного числа данного класса прибавлением числа, кратного m , то все числа из данного класса имеют с модулем m один и тот же наибольший общий делитель. По некоторым соображениям, повышенный интерес представляют те вычеты, которые имеют с модулем m наибольший общий делитель, равный единице, т.е. вычеты, которые взаимно просты с модулем.

Определение. Приведенной системой вычетов по модулю m называется совокупность всех вычетов из полной системы, взаимно простых с модулем m .

Приведенную систему обычно выбирают из наименьших неотрицательных вычетов. Ясно, что приведенная система вычетов по модулю m содержит j (m ) штук вычетов, где j (m )– функция Эйлера – число чисел, меньших m и взаимно простых с m . Если к этому моменту вы уже забыли функцию Эйлера, загляните в пункт 14 и убедитесь, что про нее там кое-что говорилось.

Пример. Пусть m = 42. Тогда приведенная система вычетов суть:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

Лемма 2. 1) Любые j (m ) чисел, попарно не сравнимые по модулю m и взаимно простые с модулем, образуют приведенную систему вычетов по модулю m .

2) Если (a,m) = 1 и x пробегает приведенную систему вычетов по модулю m , то аx так же пробегает приведенную систему вычетов по модулю m .

Доказательство. Утверждение 1) – очевидно. Докажем утверждение 2). Числа аx попарно несравнимы (это доказывается так же, как в лемме 1 этого пункта), их ровно j (m ) штук. Ясно также, что все они взаимно просты с модулем, ибо (a,m)=1, (x,m)=1 Ю (ax.m)=1 . Значит, числа аx образуют приведенную систему вычетов.

Таковы определения и основные свойства полной и приведенной систем вычетов, однако в багаже математических знаний существует еще целый ряд очень интересных и полезных фактов, касающихся систем вычетов. Если умолчать про них в этом пункте, то это, боюсь, будет прямым нарушением Закона Российской Федерации об Информации, злонамеренное утаивание которой является, согласно этому закону, административно и, даже, уголовно наказуемым деянием. Кроме того, без знакомства с дальнейшими важными свойствами систем вычетов пункт 17 получится весьма куцым. Продолжим.

Лемма 3. Пусть m 1 , m 2 , ..., m k – попарно взаимно просты и m 1 m 2 ...m k =M 1 m 1 =M 2 m 2 =...=M k m k , где

1) Если x 1 , x 2 , ..., x k пробегают полные системы вычетов по модулям m 1 , m 2 , ..., m k соответственно, то значения линейной формы M 1 x 1 +M 2 x 2 + ...+M k x k пробегают полную систему вычетов по модулю m=m 1 m 2 ...m k .

2) Если x 1 , x 2 , ..., x k пробегают приведенные системы вычетов по модулям m 1 , m 2 , ..., m k соответственно, то значения линейной формы M 1 x 1 +M 2 x 2 + ...+M k x k пробегают приведенную систему вычетов по модулю m=m 1 m 2 ...m k .

Доказательство.

1) Форма M 1 x 1 +M 2 x 2 + ...+M k x k принимает, очевидно, m 1 m 2 ...m k =m значений. Покажем, что эти значения попарно несравнимы. Ну пусть

M 1 x 1 +M 2 x 2 + ...+M k x k є M 1 x 1 С +M 2 x 2 С + ...+M k x k С (mod m)

Всякое M j , отличное от M s , кратно m s . Убирая слева и справа в последнем сравнении слагаемые, кратные m s , получим:

M s x s є M s x s С (mod m s) Ю x s є x s С (mod m s)

– противоречие с тем, что x s пробегает полную систему вычетов по модулю m s .

2). Форма M 1 x 1 +M 2 x 2 + ...+M k x k принимает, очевидно, j (m 1 ) j (m 2 ) Ч ... Ч j (m k ) = j (m 1 m 2 Ч ... Ч m k )= j (m ) (функция Эйлера мультипликативна!) различных значений, которые между собой по модулю m=m 1 m 2 ...m k попарно несравнимы. Последнее легко доказывается рассуждениями, аналогичными рассуждениям, проведенным при доказательстве утверждения 1) этой леммы. Так как (M 1 x 1 +M 2 x 2 + ...+M k x k ,m s)=(M s x s ,m s)=1 для каждого 1 Ј s Ј k , то (M 1 x 1 +M 2 x 2 + ...+M k x k ,m s)=1 , следовательно множество значений формы M 1 x 1 +M 2 x 2 + ...+M k x k образует приведенную систему вычетов по модулю m .

Лемма 4. Пусть x 1 , x 2 , ..., x k ,x пробегают полные, а x 1 , x 2 ,..., x k , x – пробегают приведенные системы вычетов по модулям m 1 , m 2 , ..., m k и m=m 1 m 2 ...m k соответственно, где (m i m j)=1 при i № j . Тогда дроби {x 1 /m 1 +x 2 /m 2 +...+x k /m k } совпадают с дробями {x/m} , а дроби { x 1 /m 1 + x 2 /m 2 +...+ x k /m k } совпадают с дробями { x /m} .

Доказательство. Доказательство обоих утверждений леммы 4 легко получается применением предыдущей леммы 3 после того, как вы приведете каждую сумму {x 1 /m 1 +x 2 /m 2 +...+x k /m k } и { x 1 /m 1 + x 2 /m 2 +...+ x k /m k } к общему знаменателю:

{x 1 /m 1 +x 2 /m 2 +...+x k /m k }={(M 1 x 1 +M 2 x 2 +...+M k x k)/m} ;

{ x 1 /m 1 + x 2 /m 2 +...+ x k /m k }={(M 1 x 1 +M 2 x 2 +...+M k x k)/m} ,

где M j =m 1 ...m j-1 m j+1 ...m k .

Если теперь принять во внимание, что дробные части чисел, получающихся при делении на модуль m любых двух чисел, сравнимых по модулю m , одинаковы (они равны r/m , где r – наименьший неотрицательный вычет из данного класса), то утверждения настоящей леммы становятся очевидными.

В оставшейся части этого пункта произойдет самое интересное – мы будем суммировать комплексные корни m -ой степени из единицы, при этом нам откроются поразительные связи между суммами корней, системами вычетов и уже знакомой мультипликативной функцией Мебиуса m (m ) .

Обозначим через e k k -ый корень m- ой степени из единицы:

Эти формы записи комплексных чисел мы хорошо помним с первого курса. Здесь k=0,1,...,m-1 – пробегает полную систему вычетов по модулю m .

Напомню, что сумма e 0 + e 1 +...+ e m-1 всех корней m -ой степени из единицы равна нулю для любого m . Действительно, пусть e 0 + e 1 +...+ e m-1 =a . Умножим эту сумму на ненулевое число e 1 . Такое умножение геометрически в комплексной плоскости означает поворот правильного m -угольника, в вершинах которого расположены корни e 0 , e 1 ,..., e m-1 , на ненулевой угол 2 p /m . Ясно, что при этом корень e 0 перейдет в корень e 1 , корень e 1 перейдет в корень e 2 , и т.д., а корень e m-1 перейдет в корень e 0 , т.е. сумма e 0 + e 1 +...+ e m-1 не изменится. Имеем e 1 a=a , откуда a=0 .

Теорема 1. Пусть m>0 - целое число, a О Z , x пробегает полную систему вычетов по модулю m . Тогда, если а кратно m , то

в противном случае, при а не кратном m ,

.

Доказательство. При а кратном m имеем: a=md и

При а не делящемся на m , разделим числитель и знаменатель дроби a/m на d – наибольший общий делитель а и m , получим несократимую дробь a 1 /m 1 . Тогда, по лемме 1, a 1 x будет пробегать полную систему вычетов по модулю m . Имеем:

ибо сумма всех корней степени m 1 из единицы равна нулю.

Напомню, что корень e k m -ой степени из единицы называется первообразным, если его индекс k взаимно прост с m . В этом случае, как доказывалось на первом курсе, последовательные степени e k 1 , e k 2 ,..., e k m-1 корня e k образуют всю совокупность корней m -ой степени из единицы или, другими словами, e k является порождающим элементом циклической группы всех корней m -ой степени из единицы.

Очевидно, что число различных первообразных корней m -ой степени из единицы равно j (m ), где j – функция Эйлера, так как индексы у первообразных корней образуют приведенную систему вычетов по модулю m .

Теорема 2. Пусть m>0 – целое число, x пробегает приведенную систему вычетов по модулю m . Тогда (сумма первообразных корней степени m ):

где m (m ) – функция Мебиуса.

Доказательство. Пусть m=p 1 a 1 p 2 a 2 ...p k a k – каноническое разложение числа m ; m 1 =p 1 a 1 , m 2 =p 2 a 2 , m 3 =p 3 a 3 ; x i пробегает приведенную систему вычетов по модулю m i . Имеем:

При a s =1 получается, что только корень e 0 =1 не является первообразным, поэтому сумма всех первообразных корней есть сумма всех корней минус единица:

стало быть, если m свободно от квадратов (т.е. не делится на r 2 , при r >1 ), то

Если же какой-нибудь показатель a s больше единицы (т.е. m делится на r 2 , при r>1 ), то сумма всех первообразных корней степени m s есть сумма всех корней степени m s минус сумма всех не первообразных корней, т.е. всех корней некоторой степени, меньшей m s . Именно, если m s =p s m s * , то:

Вот теперь, дорогие читатели, когда я представил на ваше рассмотрение довольно весьма значительное количество сведений про полные и приведенные системы вычетов, никто не сможет обвинить меня в злонамеренном нарушении Закона Российской Федерации об Информации посредством ее утаивания, поэтому я заканчиваю этот пункт с удовлетворением.

Задачки

1 . Выпишите на листочке все наименьшие неотрицательные вычеты и все абсолютно наименьшие вычеты

а) по модулю 6 ,

б) по модулю 8 .

Чуть ниже выпишите приведенные системы вычетов по этим модулям. Нарисуйте отдельно на комплексной плоскости корни шестой и корни восьмой степени из единицы, на обоих рисунках обведите кружочком первообразные корни и найдите в каждом случае их сумму.

2 . Пусть e – первообразный корень степени 2n из единицы.

Найдите сумму: 1+ e + e 2 +...+ e n-1 .

3 . Найдите сумму всех первообразных корней: а) 15-й; б) 24-й; в) 30-й степени из единицы.

4 . Найдите сумму всевозможных произведений первообразных корней n -ой степени из единицы, взятых по два.

5 . Найдите сумму k -х степеней всех корней n -ой степени из единицы.

6 . Пусть m>1 , (a, m)=1 , b – целое число, х пробегает полную, а x – приведенную систему вычетов по модулю m . Докажите, что:

а)

б)

7 . Докажите, что:

,

где р пробегает все простые делители числа а .

Классы вычетов. Системы вычетов

Краткие сведения из теории

Применяя теорему о делении с остатком можно множество целых чисел разбить на ряд классов. Рассмотрим пример. Пусть m = 6. Тогда имеем шесть классов разбиения множества целых чисел по модулю 6:

r = 1;

r = 2;

r = 3;

r = 4;

r = 5;

где через r обозначен остаток от деления целого числа на 6.

Напомним теорему о делении с остатком:

Теорема : Разделить число на число , , с остатком, значит, найти пару целых чисел q и r , таких, что выполняются следующие условия: .

Легко доказывается, что для любых целых чисел а и деление с остатком возможно и числа q и r определяются однозначно. В нашем примере полная система наименьших неотрицательных вычетов есть множество {0, 1, 2, 3, 4, 5}; полная система наименьших положительных вычетов – множество {0, 1, 2, 3, 4, 5}; полная система наименьших по абсолютной величине вычетов – множество {-2,-1, 0, 1, 2, 3}; приведённая система вычетов – множество {1,5}, так как ; фактор-множество

Один из методов выполнения арифметических операций над данными целыми числами основан на простых положениях теории чисел. Идея этого метода состоит в том, что целые числа представляются в одной из непозиционных систем – в системе остаточных классов. А именно: вместо операций над целыми числами оперируют с остатками от деления этих чисел на заранее выбранные простые числа – модули .

Чаще всего числа выбирают из множества простых чисел.

Пусть …, .

Так как в кольце целых чисел имеет место теорема о делении с остатком, т. е. где , то кольцо Z , по определению, является евклидовым.

Таким образом, в качестве чисел можно выбрать остатки от деления числа А на р i соответственно.

Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы. Полная система вычетов по модулю n ― любой набор из n попарно несравнимых по модулю n целых чисел. Обычно в качестве полной системы вычетов по модулю n берутся наименьшие неотрицательные вычеты

Делении целых чисел a и m получается частное q и остаток r , такие что

a = m q + r, 0 r m-1. Остаток r называют ВЫЧЕТ ом по модулю m .

Например, для m = 3 и для m =5 получим:

a = m q + r, m = 3 a = m q + r, m = 5
0 = 3 + 0 0 = 5 + 0
1 = 3 + 1 1 = 5 + 1
2 = 3 + 2 2 = 5 + 2
3 = 3 + 0 3 = 5 + 3
4 = 3 + 1 4 = 5 + 4
5 = 3 + 2 5 = 5 + 0
6 = 3 + 0 6 = 5 + 1
7 = 3 + 1 7 = 5 + 2

Если остаток равен нулю (r =0 ), то говорят, что m делит a нацело (или m кратно a ), что обозначают m a , а числа q и m называют делителями a . Очевидно 1 a и a a . Если a не имеет других делителей, кроме 1 и а , то а – простое число, иначе а называют составным числом. Самый большой положительный делитель d двух чисел a и m называют наибольшим общим делителем (НОД) и обозначают d = (a,m). Если НОД (a,m)= 1 , то a и m не имеют общих делителей, кроме 1 , и называются взаимно простыми относительно друг друга.



Каждому ВЫЧЕТ у r = 0, 1, 2,…, m-1 соответствует множество целых чисел a, b, … Говорят, что числа с одинаковым ВЫЧЕТ ом сравнимы по модулю и обозначают a b(mod m) или (a b) m .

Например, при m = 3 :

Например, при m = 5 :



Числа а , которые сравнимы по модулю m , образуют класс своего ВЫЧЕТа r и определяются как a = m q + r.

Числа а тоже называют ВЫЧЕТами по модулю m . НеотрицательныеВЫЧЕТы а = r (при q=0 ), принимающие значения из интервала , образуют полную систему наименьших вычетов по модулю m.

ВЫЧЕТы а , принимающие значения из интервала [-( ,…,( ] , при нечетном m или из интервала [- при четном m образуют полную систему абсолютно наименьших ВЫЧЕТ ов по модулю m.

Например, при m = 5 классы наименьших вычетов образуют

r = 0, 1, 2, 3, 4, a = -2, -1, 0, 1, 2. Обе приведенные совокупности чисел образуют полные системы вычет ов по модулю 5 .

Класс ВЫЧЕТов , элементы которого взаимно просты с модулем m

называют приведенным. Функция Эйлера определяет сколько ВЫЧЕТов из полной системы наименьших вычетов по модулю m взаимно просты с m . При простом m=p имеем = p-1.

Определение . Максимальный набор попарно несравнимых по модулю m чисел, взаимно простых с m , называется приведённой системой вычетов по модулю m . Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера.

Определение. Любое число из класса эквивалентности є m будем называть вычет ом по модулю m . Совокупность вычет ов, взятых по одному из каждого класса эквивалентности є m , называется полной системой вычет ов по модулю m (в полной системе вычет ов, таким образом, всего m штук чисел). Непосредственно сами остатки при делении на m называются наименьшими неотрицательными вычет ами и, конечно, образуют полную систему вычет ов по модулю m . Вычет r называется абсолютно наименьшим, если ïrï наименьший среди модулей вычет ов данного класса.

Пример . Проверить, образуют ли числа 13, 8, - 3, 10, 35, 60 полную систему вычетов по модулю m=6.

Решение : По определению числа образуют полную систему вычетов по модулю m , если их ровно m и они попарно несравнимы по модулюm .

Попарную несравнимость можно проверить, заменив каждое число наименьшим неотрицательным вычетом; если повторений не будет, то это полная система вычетов.

Применим теорему о делении с остатком: a = m q + r.

13 = 6 2 + 1 13 1(mod 6); 8 = 6 1 + 2 8 2(mod 6);

3 = 6 (-1) + 3 -3 3(mod 6); 10 = 6 1 + 4 10 4(mod 6);

35 = 6 5 + 5 35 5(mod 6); 60 = 6 10 + 0 60 0(mod 6).

Получили последовательность чисел: 1, 2, 3, 4, 5, 0, их ровно 6, повторений нет и они попарно несравнимы. То есть, они образуют полную систему вычетов по модулю m = 6.

Пример . Заменить наименьшим по абсолютной величине, а также наименьшим положительным вычетом 185 по модулю 16.

Решение. Применим теорему о делении с остатком:

185 = 16 11 + 9 185 9(mod 16).

Пример. Проверить, образуют ли числа (13, -13, 29, -9) приведенную систему вычетов по модулю m=10.

Решение: Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера. В нашем случае =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость: =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость:m .

Вариант 1. a = 185, m = 12; Вариант 2. a = 84, m = 9;

Вариант 3. a = 180, m = 10; Вариант 4. a = 82, m = 9;

Вариант 5. a = 85, m = 11; Вариант 6. a = 84, m = 8;

Вариант 7. a = 103, m = 87; Вариант 8. a = 84, m = 16;

Вариант 9. a = 15, m = 10; Вариант 10. a = 81, m = 9;

Вариант 11. a = 85, m = 15; Вариант 12. a = 74, m = 13;

Вариант 13. a = 185, m = 16; Вариант 14. a = 14, m = 9;

Вариант 15. a = 100, m = 11; Вариант 16. a = 484, m = 15;

Вариант 17. a = 153, m = 61; Вариант 18. a = 217, m = 19;

Вариант 19. a = 625, m = 25; Вариант 20. a = 624, m = 25;

Задание 3. Записать полную и приведенную систему наименьших